viernes, 2 de diciembre de 2011

DIAC

 DEFINICION

El DIAC (Diode Alternative Current, Figura 1) es un dispositivo bidireccional simétrico (sin polaridad) con dos electrodos principales: MT1 y MT2, y ninguno de control. Es un componente electrónico que está preparado para conducir en los dos sentidos de sus terminales, por ello se le denomina bidireccional, siempre que se llegue a su tensión de cebado o de disparo.





Figura 1: Símbolo del DIAC.


ESTRUCTURA




Figura 2 : Estructura básica del DIAC.


CARACTERISTICAS GENERALES Y APLICACIONES

Se emplea normalmente en circuitos que realizan un control de fase de la corriente del triac, de forma que solo se aplica tensión a la carga durante una fracción de ciclo de la alterna. Estos sistemas se utilizan para el control de iluminación con intensidad variable, calefacción eléctrica con regulación de temperatura y algunos controles de velocidad de motores.
La forma más simple de utilizar estos controles es empleando el circuito representado en la Figura 3, en que la resistencia variable R carga el condensador C hasta que se alcanza la tensión de disparo del DIAC, produciéndose a través de él la descarga de C, cuya corriente alcanza la puerta del TRIAC y le pone en conducción. Este mecanismo se produce una vez en el semiciclo positivo y otra en el negativo. El momento del disparo podrá ser ajustado con el valor de R variando como consecuencia el tiempo de conducción del TRIAC y, por tanto, el valor de la tensión media aplicada a la carga, obteniéndose un simple pero eficaz control de potencia.
Figura 3: Disparo de TRIAC mediante un DIAC.


TRIAC

 DEFINICION

El TRIAC (Triode for Alternative Current) es un dispositivo semiconductor de tres terminales que se usa para controlar el flujo de corriente promedio a una carga, con la particularidad de que conduce en ambos sentidos y puede ser bloqueado por inversión de la tensión o al disminuir la corriente por debajo del valor de mantenimiento. El TRIAC puede ser disparado independientemente de la polarización de puerta, es decir, mediante una corriente de puerta positiva o negativa.





Figura 1: Símbolo del TRIAC.



En la Figura 1 se muestra el símbolo esquemático e identificación de las terminales de un triac, la nomenclatura Ánodo 2 (A2) y Ánodo 1 (A1) pueden ser reemplazados por Terminal Principal 2 (T2) y Terminal Principal 1 (T1) respectivamente.



ESTRUCTURA BASICA DEL TRIAC



Figura 2 : Estructura básica del TRIAC.


La estructura contiene seis capas como se indica en la Figura 2, aunque funciona siempre como un tiristor de cuatro capas. En sentido T2-T1 conduce a través de P1N1P2N2 y en sentido T1-T2 a través de P2N1P1N4. La capa N3 facilita el disparo con intensidad de puerta negativa. La complicación de su estructura lo hace más delicado que un tiristor en cuanto a di/dt y dv/dt y capacidad para soportar sobre intensidades. Se fabrican para intensidades de algunos amperios hasta unos 200 (A) eficaces y desde 400 a 1000 (V) de tensión de pico repetitivo. Los TRIAC son fabricados para funcionar a frecuencias bajas; los fabricados para trabajar a frecuencias medias son denominados alternistores.


El TRIAC actúa como dos rectificadores controlados de silicio (SCR) en paralelo Figura 3, este dispositivo es equivalente a dos "latchs"( transistores conectados con realimentación positiva, donde la señal de retorno aumenta el efecto de la señal de entrada).




Figura 3.


La diferencia más importante que se encuentra entre el funcionamiento de un triac y el de dos tiristores es que en este último caso cada uno de los dispositivos conducirá durante medio ciclo si se le dispara adecuadamente, bloqueándose cuando la corriente cambia de polaridad, dando como resultado una conducción completa de la corriente alterna. El TRIAC, sin embargo, se bloquea durante el breve instante en que la corriente de carga pasa por el valor cero, hasta que se alcanza el valor mínimo de tensión entre T2 y T1, para volver de nuevo a conducir, suponiendo que la excitación de la puerta sea la adecuada. Esto implica la perdida de un pequeño ángulo de conducción, que en el caso de cargas resistivas, en las que la corriente esta en fase con la tensión, no supone ningún problema. En el caso de cargas reactivas se debe tener en cuenta, en el diseño del circuito, que en el momento en que la corriente pasa por cero no coincide con la misma situación de la tensión aplicada, apareciendo en este momento unos impulsos de tensión entre los dos terminales del componente.

METODOS DE DISPARO

Como hemos dicho, el TRIAC posee dos ánodos denominados ( MT1 y MT2) y una compuerta G. La polaridad de la compuerta G y la polaridad del ánodo 2, se miden con respecto al ánodo 1.
El triac puede ser disparado en cualquiera de los dos cuadrantes I y III mediante la aplicación entre los terminales de compuerta G y MT1 de un impulso positivo o negativo. Esto le da una facilidad de empleo grande y simplifica mucho el circuito de disparo. Veamos cuáles son los fenómenos internos que tienen lugar en los cuatro modos posibles de disparo.
1. El primer modo del primer cuadrante designado por I (+), es aquel en que la tensión del ánodo MT2 y la tensión de la compuerta son positivas con respecto al ánodo MT1 y este es el modo más común (Intensidad de compuerta entrante).
La corriente de compuerta circula internamente hasta MT1, en parte por la unión P2N2 y en parte a través de la zona P2. Se produce la natural inyección de electrones de N2 a P2, que es favorecida en el área próxima a la compuerta por la caída de tensión que produce en P2 la circulación lateral de corriente de compuerta. Esta caída de tensión se simboliza en la figura por signos + y -. Parte de los electrones inyectados alcanzan por difusión la unión P2N1 que bloquea el potencial exterior y son acelerados por ella iniciándose la conducción.
2. El Segundo modo, del tercer cuadrante, y designado por III(-) es aquel en que la tensión del ánodo MT2 y la tensión de la compuerta son negativos con respecto al ánodo MT1 (Intensidad de compuerta saliente).
Se dispara por el procedimiento de puerta remota, conduciendo las capas P2N1P1N4. La capa N3 inyecta electrones en P2 que hacen más conductora la unión P2N1. La tensión positiva de T1 polariza el área próxima de la unión P2N1 más positivamente que la próxima a la puerta. Esta polarización inyecta huecos de P2 a N1 que alcanzan en parte la unión N1P1 y la hacen pasar a conducción.
3. El tercer modo del cuarto cuadrante, y designado por I(-) es aquel en que la tensión del ánodo MT2 es positiva con respecto al ánodo MT1 y la tensión de disparo de la compuerta es negativa con respecto al ánodo MT1( Intensidad de compuerta saliente).
El disparo es similar al de los tiristores de puerta de unión. Inicialmente conduce la estructura auxiliar P1N1P2N3 y luego la principal P1N1P2N2. El disparo de la primera se produce como en un tiristor normal actuando T1 de puerta y P de cátodo. Toda la estructura auxiliar se pone a la tensión positiva de T2 y polariza fuertemente la unión P2N2 que inyecta electrones hacia el área de potencial positivo. La unión P2N1 de la estructura principal, que soporta la tensión exterior, es invadida por electrones en la vecindad de la estructura auxiliar, entrando en conducción.
4. El cuarto modo del Segundo cuadrante y designado por III(+) es aquel en que la tensión del ánodo T2 es negativa con respecto al ánodo MT1, y la tensión de disparo de la compuerta es positiva con respecto al ánodo MT1(Intensidad de compuerta entrante).
El disparo tiene lugar por el procedimiento llamado de puerta remota. Entra en conducción la estructura P2N1P1N4.
La inyección de N2 a P2 es igual a la descrita en el modo I(+). Los que alcanzan por difusión la unión P2N1 son absorbido por su potencial de unión, haciéndose más conductora. El potencial positivo de puerta polariza más positivamente el área de unión P2N1 próxima a ella que la próxima a T1, provocándose una inyección de huecos desde P2 a N1 que alcanza en parte la unión N1P1 encargada de bloquear la tensión exterior y se produce la entrada en conducción.
Existe un gran número de posibilidades para realizar en la práctica el disparo del TRIAC, pudiéndose elegir aquella que más resulte adecuada para la aplicación concreta de que se trate. Se pueden resumir en dos variantes básicas:
  1. Disparo por corriente continua,
  2. Disparo por corriente alterna.
                DISPARO POR CORRIENTE CONTINUA
En este caso la tensión de disparo proviene de una fuente de tensión continua aplicada al TRIAC a través de una resistencia limitadora de la corriente de puerta. Es necesario disponer de un elemento interruptor en serie con la corriente de disparo encargado de la función de control, que puede ser un simple interruptor mecánico o un transistor trabajando en conmutación.
Este sistema de disparo es el normalmente empleado en los circuitos electrónicos alimentados por tensiones continuas cuya función sea la de control de una corriente a partir de una determinada señal de excitación, que generalmente se origina en un transductor de cualquier tipo.
            DISPARO POR CORRIENTE ALTERNA.
El disparo por corriente alterna se puede realizar mediante el empleo de un transformador que suministre la tensión de disparo, o bien directamente a partir de la propia tensión de la red con una resistencia limitadora de la corriente de puerta adecuada y algún elemento interruptor que entregue la excitación a la puerta en el momento preciso.
CARACTERISTICAS GENERALES Y APLICACIONES
La versatibilidad del TRIAC y la simplicidad de su uso le hace ideal para una amplia variedad de aplicaciones relacionadas con el control de corrientes alternas. Una de ellas es su utilización como interruptor estático ofreciendo muchas ventajas sobre los interruptores mecánicos convencionales, que requieren siempre el movimiento de un contacto, siendo la principal la que se obtiene como consecuencia de que el TRIAC siempre se dispara cada medio ciclo cuando la corriente pasa por cero, con lo que se evitan los arcos y sobre tensiones derivadas de la conmutación de cargas inductivas que almacenan una determinada energía durante su funcionamiento.
Resumiendo, algunas características de los TRIAC:
- El TRIAC conmuta del modo de corte al modo de conducción cuando se inyecta corriente a la compuerta. Después del disparo la compuerta no posee control sobre el estado del TRIAC. Para apagar el TRIAC la corriente anódica debe reducirse por debajo del valor de la corriente de retención Ih.
- La corriente y la tensión de encendido disminuyen con el aumento de temperatura y con el aumento de la tensión de bloqueo.
- La aplicación de los TRIACS, a diferencia de los Tiristores, se encuentra básicamente en corriente alterna. Su curva característica refleja un funcionamiento muy parecido al del tiristor apareciendo en el primer y tercer cuadrante del sistema de ejes. Esto es debido a su bidireccionalidad.
- La principal utilidad de los TRIACS es como regulador de potencia entregada a una carga, en corriente alterna.

DISPOSITIVOS DE ELECTRONICA DE POTENCIA

SCR

El SCR (Silicon Controlled Rectifier o Rectificador Controlado de Silicio, Figura 1), es un dispositivo semiconductor biestable formado por tres uniones pn con la disposición pnpn (Figura 2). Está formado por tres terminales, llamados Ánodo, Cátodo y Puerta. La conducción entre ánodo y cátodo es controlada por el terminal de puerta. Es un elemento unidireccional (sentido de la corriente es único), conmutador casi ideal, rectificador y amplificador a la vez.



ESTRUCTURA BASICA DEL SCR

CARACTERISTICAS GENERALES
• Interruptor casi ideal.
• Soporta tensiones altas.
• Amplificador eficaz.
• Es capaz de controlar grandes potencias.
• Fácil controlabilidad.
• Relativa rapidez.
• Características en función de situaciones pasadas (memoria).

CARACTERISTICAS ESTATICAS
Las características estáticas corresponden a la región ánodo - cátodo y son los valores máximos que colocan al elemento en límite de sus posibilidades:
- Tensión inversa de pico de trabajo .............................................: VRWM
- Tensión directa de pico repetitiva ...............................................: VDRM
- Tensión directa ...........................................................................: VT
- Corriente directa media ...............................................................: ITAV
- Corriente directa eficaz ................................................................: ITRMS
- Corriente directa de fugas ............................................................: IDRM
- Corriente inversa de fugas ............................................................: IRRM
- Corriente de mantenimiento ..........................................................: IH
Las características térmicas a tener en cuenta al trabajar con tiristores son:
- Temperatura de la unión ................................................................: Tj
- Temperatura de almacenamiento ...................................................: Tstg
- Resistencia térmica contenedor-disipador ......................................: Rc-d
- Resistencia térmica unión-contenedor ............................................: Rj-c
- Resistencia térmica unión-ambiente.................................................: Rj-a
- Impedancia térmica unión-contenedor.............................................: Zj-c

AREA DE DISPARO SEGURO
               
En esta área (Figura 3) se obtienen las condiciones de disparo del SCR. Las tensiones y corrientes admisibles para el disparo se encuentran en el interior de la zona formada por las curvas:
Curva A y B: límite superior e inferior de la tensión puerta-cátodo en función de la corriente positiva de puerta, para una corriente nula de ánodo.
Curva C: tensión directa de pico admisible VGF.
Curva D: hipérbola de la potencia media máxima PGAV que no debemos sobrepasar.
Figura 3. Curva características de puerta del tiristor.

El diodo puerta (G) - cátodo (K) difiere de un diodo de rectificación en los siguientes puntos:
  • Una caída de tensión en sentido directo más elevada.
  • Mayor dispersión para un mismo tipo de tiristor.
CARACTERISTICAS DINAMICAS
Tensiones transitorias:
- Valores de la tensión superpuestos a la señal de la fuente de alimentación.
- Son breves y de gran amplitud.
- La tensión inversa de pico no repetitiva (VRSM) debe estar dentro de esos valores.
Impulsos de corriente:
- Para cada tiristor se publican curvas que dan la cantidad de ciclos durante los cuales puede tolerarse una corriente de pico dada (Figura 4).
- A mayor valor del impuso de corriente, menor es la cantidad de ciclos.
- El tiempo máximo de cada impulso está limitado por la temperatura media de la unión.
Figura 4. Curva de limitación de impulsos de corriente.

Ángulos de conducción:
- La corriente y tensión media de un SCR dependen del ángulo de conducción.
- A mayor ángulo de conducción, se obtiene a la salida mayor potencia.
- Un mayor ángulo de bloqueo o disparo se corresponde con un menor ángulo de conducción

APLICACION DE LOS SCR
Las aplicaciones de los tiristores se extiende desde la rectificación de corrientes alternas, en lugar de los diodos convencionales hasta la realización de determinadas conmutaciones de baja potencia en circuitos electrónicos, pasando por los onduladores o inversores que transforman la corriente continua en alterna.
La principal ventaja que presentan frente a los diodos cuando se les utiliza como rectificadores es que su entrada en conducción estará controlada por la señal de puerta. De esta forma se podrá variar la tensión continua de salida si se hace variar el momento del disparo ya que se obtendrán diferentes ángulos de conducción del ciclo de la tensión o corriente alterna de entrada. Además el tiristor se bloqueará automáticamente al cambiar la alternancia de positiva a negativa ya que en este momento empezará a recibir tensión inversa.
Por lo anteriormente señalado el SCR tiene una gran variedad de aplicaciones, entre ellas están las siguientes:

· Controles de relevador.
· Circuitos de retardo de tiempo.
· Fuentes de alimentación reguladas.
· Interruptores estáticos.
· Controles de motores.
· Recortadores.
· Inversores.
· Ciclo conversores.
· Cargadores de baterías.
· Circuitos de protección.
· Controles de calefacción.
· Controles de fase.


martes, 14 de junio de 2011

FINALES DE CARRERA

FINAL DE CARRERA



el final de carrera o sensor de contacto (también conocido como "interruptor de límite") o limit switch, son dispositivos eléctricos, neumáticos o mecánico situados al final del recorrido de un elemento móvil, como por ejemplo una cinta transportadora, con el objetivo de enviar señales que puedan modificar el estado de un circuito. Internamente pueden contener interruptores normalmente abiertos (NA o NO en inglés), cerrados (NC) o conmutadores dependiendo de la operación que cumplan al ser accionados, de ahí la gran variedad de finales de carrera que existen en mercado.

Generalmente estos sensores están compuestos por dos partes: un cuerpo donde se encuentran los contactos y una cabeza que detecta el movimiento. Su uso es muy diverso, empleándose, en general, en todas las máquinas que tengan un movimiento rectilíneo de ida y vuelta o sigan una trayectoria fija, es decir, aquellas que realicen una carrera o recorrido fijo, como por ejemplo ascensores, montacargas, robots, etc.

Los finales de carrera están fabricados en diferentes materiales tales como metal, plástico o fibra de vidrio








Funcionamiento

Estos sensores tienen dos tipos de funcionamiento: modo positivo y modo negativo. En el modo positivo el sensor se activa cuando el elemento a controlar tiene una tara que hace que el eje se eleve y conecte el contacto móvil con el contacto NC. Cuando el muelle (resorte de presión) se rompe el sensor se queda desconectado. El modo negativo es la inversa del modo anterior, cuando el objeto controlado tiene un saliente que empuje el eje hacia abajo, forzando el resorte de copa y haciendo que se cierre el circuito. En este modo cuando el muelle falla y se rompe permanece activado.

Ventajas e Inconvenientes

Entre las ventajas encontramos la facilidad en la instalación, la robustez del sistema, es insensible a estados transitorios, trabaja a tensiones altas, debido a la inexistencia de imanes es inmune a la electricidad estática. Los inconvenientes de este dispositivo son la velocidad de detección y la posibilidad de rebotes en el contacto, además depende de la fuerza de actuación.

Detectores de posición (finales de carrera)

· Interruptores de posición

También llamados Finales de Carrera son utilizados para transformar un movimiento mecánico en una señal eléctrica. El movimiento mecánico en forma de leva o empujador actúa sobre la palanca o pistón de accionamiento del interruptor de posición haciendo abrir o cerrar un contacto eléctrico del interruptor. Esta señal eléctrica se utiliza para posicionar, contar, parar o iniciar una secuencia operativa al actuar sobre los elementos de control de la máquina.

La experiencia demuestra que la mayoría de fallos de los interruptores de posición se debe a defectos en la instalación derivados de una inadecuada elección

Elección



La adecuada elección de un interruptor de posición consiste básicamente, en la correcta determinación del elemento de accionamiento y del cuerpo aprobado. La elección del tipo de accionamiento de la forma de la velocidad, dirección y carrera de la lava o parte de la máquina que lo hará actuar y de la precisión requerida.

La elección del cuerpo dependerá del grado de protección requerido y de las dimensiones disponibles.

Otras consideraciones como frecuencia de maniobra, margen de temperaturas o características eléctricas deben también ponerse en cuenta en la elección.





SENSORES FOTOELECTRICOS

SENSORES FOTOELECTRICOS

Un sensor fotoeléctrico es un dispositivo electrónico que responde al cambio en la intensidad de la luz. Estos sensores requieren de un componente emisor que genera la luz, y un componente receptor que “ve” la luz generada por el emisor. Todos los diferentes modos de sensado se basan en este principio de funcionamiento. Están diseñados especialmente para la detección, clasificación y posicionado de objetos; la detección de formas, colores y diferencias de superficie, incluso bajo condiciones ambientales extremas.

Los sensores de luz se usan para detectar el nivel de luz y producir una señal de salida representativa respecto a la cantidad de luz detectada. Un sensor de luz incluye un transductor fotoeléctrico para convertir la luz a una señal eléctrica y puede incluir electrónica para condicionamiento de la señal, compensación y formateo de la señal de salida.







Barrera Emisor-Recepto: El sensor viene en 2 piezas, el emisor y el receptor, cuando el objeto atraviesa el haz de luz es cuando se activa el sensor.



Barrera Reflectiva: En el cuerpo del sensor se encuentra el emisor y el receptor, en el otro extremo va una cinta reflectiva para regresar el haz de luz. Existen cintas reflectivas con filtro, es decir que solo reflejan la luz que emite el sensor y discriminan cualquier otra señal luminosa.



Sensor Difuso: En el cuerpo del sensor se encuentra el emisor y receptor, estos están colocados con cierto ángulo, de tal manera, que el haz triangule sobre el objeto a censar y refleje la luz. Es el de Menor Rango.

Barrera de luz

Las barreras tipo emisor-receptor están compuestas de dos partes, un componente que emite el haz de luz, y otro componente que lo recibe. Se establece un área de detección donde el objeto a detectar es reconocido cuando el mismo interrumpe el haz de luz. Debido a que el modo de operación de esta clase de sensores se basa en la interrupción del haz de luz, la detección no se ve afectada por el color, la textura o el brillo del objeto a detectar. Estos sensores operan de una manera precisa cuando el emisor y el receptor se encuentran alineados. Esto se debe a que la luz emitida siempre tiende a alejarse del centro de la trayectoria.

Ventajas e Inconvenientes

La luz solo tiene que atravesar el espacio de trabajo una vez, por lo que se favorecen grandes distancias de funcionamiento, hasta 60 metros. Son apropiadas para condiciones ambientales poco favorables, como suciedad, humedad, o utilización a la intemperie, así como independientemente del color del objeto realiza una detección precisa del objeto. La instalación se ve dificultada por tener que colocar dos aparatos separados y con los ejes ópticos alineados de manera precisa y delicada, ya que el detector emite en infrarrojos. Además de la imposibilidad de que sean transparentes..

Precauciones de montaje

A la hora del montaje hay que tener en cuenta las superficies reflectantes cercanas a los dispositivos, provocando un mal funcionamiento de la fotocélula. También hay que tener en cuenta las posibles interferencias mutuas por la cercanía de varios de estos dispositivos, además de controlar los ambientes sucios, ya que la suciedad afecta negativamente en la lente emisora.

Reflexión sobre espejo

La luz infrarroja viaja en línea recta, en el momento en que un objeto se interpone el haz de luz rebota contra este y cambia de dirección permitiendo que la luz sea enviada al receptor y el elemento sea censado, un objeto de color negro no es detectado ya que este color absorbe la luz y el sensor no experimenta cambios.

Ventajas e Inconvenientes

En estas fotocélulas el haz de luz recorre dos veces la distancia de detección, con lo cual las distancias de trabajo que se consiguen son medias (de unos 15 metros). El espejo es fácil de instalar, y no se necesita cableado hasta el mismo, por lo que solo hay que cablear un detector. Además de ser válidos para detección de objetos opacos, también cubren eficientemente aplicaciones con detección de objetos con cierto grado de transparencia. El problema más llamativo es que el objeto a detectar tiene que ser mayor que el espejo y, a ser posible, no reflectante, además de que la alineación tiene que ser precisa.

Precauciones de montaje

Un objeto con superficie reflectante puede provocar errores de detección. esto se puede evitar haciendo que la reflexión del objeto a detectar no tenga la misma inclinación que el haz del detector.

Reflexión difusa

En las fotocélulas de reflexión difusa sobre el objeto el emisor lanza un haz de luz; los rayos del haz se pierden en el espacio si no hay objeto, pero cuando hay presencia de objeto, la superficie de éste produce una reflexión difusa de la luz, parte de la cual incide sobre el receptor y se cambia así la señal de salida de la fotocélula.

Reflexión definida

La reflexión en la superficie del objeto a detectar por las fotocélulas de reflexión definida normalmente es de carácter difuso, como en los sensores de reflexión difusa, o sea que los rayos reflejados salen sin una trayectoria determinada. Esto es muy importante, para no caer en la falsa idea de que la diferencia respecto a los sensores de reflexión difusa está en el tipo de reflexión; lo está en el tipo de óptica empleada. En las fotocélulas de reflexión definida la fuente de luz está a una distancia mayor que la distancia focal, por lo que el haz converge a un punto del eje óptico

Ventajes e Inconvenientes

Las fotocélulas de reflexión sobre objeto se componen únicamente de un emisor y un receptor montados bajo una misma carcasa, por lo que el montaje es sencillo y rápido. En estas fotocélulas el haz de luz recorre dos veces la distancia de detección y además el objeto puede ser de reflectividad baja, por lo que sólo se consiguen distancias de detección pequeñas (por lo general menos de un metro.

SENSORES CAPACITIVOS

SENSORES CAPACITIVOS



Los sensores capacitivos son un tipo de sensor eléctrico.

Los sensores capacitivos (KAS) reaccionan ante metales y no metales que al aproximarse a la superficie activa sobrepasan una determinada capacidad. La distancia de conexión respecto a un determinado material es tanto mayor cuanto más elevada sea su constante dieléctrica.






FUNCIONAMIENTO DEL SENSOR CAPACITIVO
El principio de funcionamiento se basa en la generación de un campo eléctrico, desenvuelto por un oscilador controlado por capacitores.

El capacitor es formado por dos placas metálicas, cargadas con cargas eléctricas opuestas, montada en la fase censora, de forma a proyectar el campo eléctrico para afuera del sensor, formando así un capacitor que posee como dieléctrico el aire.

Cuando un material se aproxima a la fase censora la faja del campo eléctrico, o dieléctrico del medio se altera, alterando también el dieléctrico del capacitor frontal del sensor. Como el oscilador del sensor es controlado por el capacitor frontal, cundo aproximamos un material, la capacitancia también se altera, provocando una nudanca en el circuito oscilador. Esta variación es convertida en una señal continua, que comparando con un valor patrón pasa a actuar en el estado de salida.

Aplicaciones

Estos sensores se emplean para la identificación de objetos, para funciones contadoras y para toda clase de controles de nivel de carga de materiales sólidos o líquidos. También son utilizados para muchos dispositivos con pantalla táctil, como teléfonos móviles, ya que el sensor percibe la pequeña diferencia de potencial entre membranas de los dedos eléctricamente polarizados de una persona




ESPECIFICACIONES A TENER EN CUENTA EN EL MONTAJE Y A LA SELECCION DE ESTE TIPO DE SENSOR
Las ventajas de este dispositivo son algunas más que en el caso de los sensores inductivos. La primera ventaja es común para ambos, detectan sin necesidad de contacto físico, pero además esto sensor lo realiza de cualquier objeto. Además, debido a su funcionamiento tiene muy buena adaptación a los entornos industriales, adecuado para la detección de materiales polvorientos o granulados. La duración de este sensor es independiente del número de maniobras que realice y soporta bien las cadencias de funcionamiento elevados. Entre los inconvenientes se encuentra el alcance, dependiendo del diámetro del sensor, puede alcanzar hasta los 60mm, igual que la modalidad inductiva. Otro inconveniente es que depende de la masa a detectar, si quiero realizar una detección de cualquier tipo de objeto este sensor no nos sirve, puesto que depende de la constante eléctrica. Esta desventaja viene encadenada con la puesta en servicio, antes de colocar el sensor lo tenemos que instalar; los detectores cuentan con un potenciómetro de ajuste que permite ajustar la sensibilidad. Según la aplicación será necesario adaptar el ajuste, por ejemplo para materiales de constante dieléctrica (er) débil como el papel, cartón o vidrio, en caso de tener una er fuerte tenemos que reducir la sensibilidad, con objetos del tipo metales o líquidos.



SENSORES INDUCTIVOS

SENSORES INDUCTIVOS

Los sensores inductivos son una clase especial de sensores que sirven para detectar materiales metálicos ferrosos. Son de gran utilización en la industria, tanto para aplicaciones de posicionamiento como para detectar la presencia o ausencia de objetos metálicos en un determinado contexto: detección de paso, de atasco, de codificación y de conteo. Los Sensores Inductivos pueden traer 2 ó 3 Hilos de conexión. Si es de 2, la conexión es para corriente alterna, generalmente. Si es de 3 hilos es para corriente directa en sus dos presentaciones NPN o PNP.






ESTADOS DE UN SENSOR INDUCTIVO


En función de la distancia entre el sensor y el objeto, el primero mantendrá una señal de salida 1.- Objeto a detectar ausente:

·         amplitud de oscilación al máximo, sobre el nivel de operación;

·         la salida se mantiene inactiva (OFF).


2.- Objeto a detectar acercándose a la zona de detección:

·         se producen corrientes de Foucault, por tanto hay una “transferencia de energía”;

·         el circuito de detección detecta una disminución de la amplitud, la cual cae por debajo del nivel de operación;

·         la salida es activada (ON).


3.- Objeto a detectar se retira de la zona de detección:

·         eliminación de corrientes de Foucault;

·         el circuito de detección detecta el incremento de la amplitud de oscilación;

·         como la salida alcanza el nivel de operación, la misma se desactiva (OFF).



ESPECIFICACIONES A TENER EN CUENTA EN EL MONTAJE Y A LA SELECCIÒN

* La superficie del objeto a detectar no debe ser menor que el diámetro del sensor de proximidad (preferentemente 2 veces más grande que el tamaño o diámetro del sensor). Si fuera menor que el 50% del diámetro del sensor, la distancia de detección disminuye sustancialmente.
* Debido a las limitaciones de los campos magnéticos, los sensores inductivos tienen una distancia de detección pequeña comparados con otros tipos de sensores. Esta distancia puede variar, en función del tipo de sensor inductivo, desde fracciones de milímetros hasta 40 mm en promedio. * Para compensar el limitado rango de detección, existe una extensa variedad de formatos de sensores inductivos: cilíndricos, chatos, rectangulares, etc.
* Los sensores inductivos cilíndricos son los más usuales en las aplicaciones presentes en la industria.
* Posibilidad de montar los sensores tanto enrasados como no enrasados.
* Gracias a no poseer partes móviles los sensores de proximidad no sufren en exceso el desgaste.